Search results for "nonlinear microscopy"

showing 2 items of 2 documents

Visualization of Keratin with Diffuse Reflectance and Autofluorescence Imaging and Nonlinear Optical Microscopy in a Rare Keratinopathic Ichthyosis.

2021

Keratins are one of the main fluorophores of the skin. Keratinization disorders can lead to alterations in the optical properties of the skin. We set out to investigate a rare form of keratinopathic ichthyosis caused by KRT1 mutation with two different optical imaging methods. We used a newly developed light emitting diode (LED) based device to analyze autofluorescence signal at 405 nm excitation and diffuse reflectance at 526 nm in vivo. Mean autofluorescence intensity of the hyperkeratotic palmar skin was markedly higher in comparison to the healthy control (162.35 vs. 51.14). To further assess the skin status, we examined samples from affected skin areas ex vivo by nonlinear optical micr…

MaleNonlinear Optical MicroscopyHyperkeratosisautofluorescencelcsh:Chemical technologyBiochemistryAnalytical Chemistry030207 dermatology & venereal diseases03 medical and health sciences0302 clinical medicineIn vivoKeratinmedicineHumanslcsh:TP1-1185Electrical and Electronic EngineeringInstrumentationkeratinSkinchemistry.chemical_classificationHyperkeratosis Epidermolyticintegumentary systemhyperkeratosisChemistryCommunicationOptical ImagingLEDnonlinear microscopyepidermolytic ichthyosismedicine.diseasediffuse reflectanceFluorescenceNonlinear optical microscopyAtomic and Molecular Physics and OpticsAutofluorescencemedicine.anatomical_structure030220 oncology & carcinogenesisChild Preschoolmultiphoton microscopyhistopathologyKeratinsKRT1EpidermisDiffuse reflectionBiomedical engineeringSensors (Basel, Switzerland)
researchProduct

Tunable Four-wave Mixing Light Source Based on Photonic Crystal Fibers with Variable Chromatic Dispersion

2019

We present a detailed experimental study of fourwave mixing tuning in photonic crystal fibers that were filled either with ethanol or with heavy water. It is demonstrated that wide tuning ranges can be achieved in both cases through the variable chromatic dispersion generated by thermo-optic effect. Tunability of the signal band from 745 nm to 919 nm, and of the idler band from 1260 nm to 1759 nm is demonstrated with a pump at 1064 nm. Numerical calculations were carried out and show good agreement with experimental measurements. We present a detailed experimental study of fourwave mixing tuning in photonic crystal fibers that were filled either with ethanol or with heavy water. It is demon…

Materials scienceOptical fiberbusiness.industryphotonic crystal fibersnonlinear opticsUNESCO::FÍSICANonlinear opticsPhysics::Opticsnonlinear microscopyAtomic and Molecular Physics and Opticslaw.inventionsymbols.namesakeFour-wave mixinglaw:FÍSICA [UNESCO]symbolsOptoelectronicsfour-wave mixingbusinessRefractive indexRaman scatteringMixing (physics)Photonic-crystal fiberVariable (mathematics)
researchProduct